
AbYSS: Adapting Scatter Search for

Multiobjective Optimization

A. J. Nebro 1 , F. Luna 1 , E. Alba 1 , A. Beham b ,
B. Dorronsoro 1

aDepartamento de Lenguajes y Ciencias de la Computación
University of Málaga

Málaga (Spain)
bInstitute for Formal Models and Verification

Johannes Kepler University
Linz (Austria)

TECH-REPORT: ITI-2006-2

Abstract

In this paper we propose a new algorithm for solving multiobjective optimization
problems. Our proposal adapts the well-known scatter search template for single
objective optimization to the multiobjective domain. The result is a hybrid meta-
heuristic algorithm called AbYSS, which follows the scatter search structure but
using mutation and crossover operators coming from the field of evolutionary algo-
rithms. AbYSS incorporates typical concepts from the multiobjective field, such as
Pareto dominance, density estimation, and an external archive to store the nondom-
inated solutions. We evaluate AbYSS with a standard benchmark including both
unconstrained and constrained problems, and it is compared against two state-of-
the-art multiobjective optimizers, NSGA-II and SPEA2. The obtained results indi-
cate that AbYSS produces very competitive Pareto fronts according to the applied
convergence metric, and it clearly outperforms the other two algorithms concerning
the diversity of the solutions and the hypervolume metric.

Key words: Multiobjective optimization, Scatter Search, External Archive,
Hybridization, Performance Comparison, Diversity
PACS:

Email addresses: antonio@lcc.uma.es (A. J. Nebro), flv@lcc.uma.es (F.
Luna), eat@lcc.uma.es (E. Alba), andreas.beham@students.jku.at (A.
Beham), dorronsoro@lcc.uma.es (B. Dorronsoro).
1 This work has been partially funded by the Ministry of Science and Technology
and FEDER under contract TIN2005-08818-C04-01 (the OPLINK project).

Preprint submitted to Elsevier Science 20 March 2006

1 Introduction

Most real world optimization problems involve the optimization of more than
one function, which in turn can require a significant computational time to be
evaluated. In this context, deterministic techniques are difficult to apply to
obtain the set of Pareto optimal solutions of many multiobjective optimization
problems (MOPs), so stochastic methods have been widely used and applied.
Among them, the use of evolutionary algorithms for solving MOPs has signif-
icantly grown in the last years, giving raise to a wide variety of algorithms,
such as NSGA-II [1], SPEA2 [2], PAES [3], and many others [4][5].

Scatter Search [6][7][8] is a metaheuristic algorithm that can be considered
as an evolutionary algorithm in the sense that it incorporates the concept of
population. However, scatter search tries to avoid using many random com-
ponents, so it does not use typical evolutionary algorithms operators such as
mutation nor crossover. Scatter search is based on using a small population,
known as the reference set, whose individuals are combined to construct new
solutions which are obtained in a systematic way. Furthermore, these new indi-
viduals can be improved by applying a local search method. The reference set
is initialized from an initial population composed of disperse solutions, and it
is updated by taking into account the solutions resulting from the local search
improvement. Scatter search has been found to be successful in a wide variety
of optimization problems [7], but until recently it had not been extended to
deal with MOPs.

Our interest here is to adapt the well-known scatter search template [6] to
multiobjective optimization. The goal is to design a competitive algorithm
capable of improving the resuls produced by state-of-the-art multiobjective
evolutionary algorithms, such as NSGA-II and SPEA2. To achieve this objec-
tive we are not concerned about using a pure scatter search approach, so we
consider the use of mutation and crossover operators if their use contributes
to enhance the search capabilities of the algorithm. As a result, our approach,
called AbYSS (Archive-Based hYbrid Scatter Search), cannot be considered
strictly as scatter search but an hybrid of this algorithm with an evolutionary
algorithm.

AbYSS combines ideas of three state-of-the-art evolutionary algorithms for
solving MOPs. On the one hand, an external archive is used to store the non-
dominated solutions found during the search, following the scheme applied
by PAES, but using the crowding distance of NSGA-II as a niching measure
instead of the adaptive grid used by PAES [3]; on the other hand, the selection
of solutions from the initial set to build the reference set applies the density
estimation used by SPEA2.

2

The contributions of our work are summarized in the following:

• We propose a hybrid algorithm based on scatter search for solving con-
strained as well as unconstrained MOPs. The algorithm is based on incor-
porating the concepts of Pareto dominance, external archiving, and two
different density estimators.

• Several possible configurations for AbYSS are studied in order to get a
better understanding of the behavior of the algorithm.

• We exhaustively analyze the performance of AbYSS by comparing it against
the algorithms NSGA-II, and SPEA2, using several test functions and met-
rics taken from the specialized literature.

The rest of the paper is organized as follows. In Section 2, we discuss related
works concerning multiobjective optimization and scatter search. Section 3 is
devoted to the description of our proposal. A study of the parameters char-
acterizing AbSS is carried out in Section 4. Experimental results, comparing
AbYSS with other evolutionary algorithms for solving MOPs, are presented
and analyzed in Section 5. Finally, we conclude the paper and give some lines
of future work in Section 6.

2 Related Work

The application of scatter search to multiobjective optimization has received
little attention until recently. In this section we analyze first the proposals
presented in [9], [10], [11], and [12]; after that, several works focused on solving
particular MOPs using scatter search are commented.

MOSS [9] is an algorithm that proposes a tabu/scatter search hybrid method
for solving nonlinear multiobjective optimization problems. Tabu search is
used in the diversification generation method to obtain a diverse approxima-
tion to the Pareto-optimal set of solutions; it is also applied to rebuild the ref-
erence set after each iteration of the scatter search algorithm. To measure the
quality of the solutions, MOSS uses a weighted sum approach. This algorithm
is compared against NSGA-II, SPEA-2, and PESA on a set of unconstrained
test functions.

Similarly to MOSS, SSPMO [10] is a scatter search algorithm which includes
tabu search, although they differ in the use of different tabu search algorithms.
SSPMO obtains a part of the reference set by selecting the best solutions of the
initial set for each objective functions. The rest of the reference set is obtained
by using the usual approach of selecting the remaining solutions in the initial
set that maximize the distance to the solutions already in the reference set.
In contrast to MOSS, the initial set is updated with solutions obtained in

3

the scatter search main loop. SSPMO is evaluated by using a benchmark of
unconstrained test functions.

SSMO [11] is scatter search algorithm for solving MOPs. It is characterized by
using a nondominating sorting procedure to build the reference set from the
initial set, and a local search based on a mutation operator is used to improve
the solutions obtained from the reference set. A key feature of SSMO is the
use of the initial set as a population where all the non-dominated solutions
found in the scatter search loop are stored. This algorithm is evaluated with
a set of unconstrained and constrained test functions.

A multiobjective scatter search algorithm, called M-scatter search, was pre-
sented in [12]. The authors used the non-dominated sorting technique and the
niched-type penalty method of NSGA [13] for extending the scatter search al-
gorithm to multiobjective optimization. M-scatter search also uses an offline

set that stores the non-dominated solutions found during the computation.
The NSGA niching method is applied in the updating procedure of the offline
set for maintaining non-dominated solutions uniformly distributed along the
Pareto front.

Compared to these proposals, AbYSS is also applied to solve MOPs with
continous bounded variables. However, it follows the steps of the scatter search
algorithm, but using mutation and crossover operators. Another difference is
that AbYSS uses two different density estimations in the algorithm.

Scatter search has been applied to solve a number of MOPs. In [14] a scatter
search algorithm for solving the bi-criteria multi-dimensional knapsack prob-
lems is proposed. This algorithm is tailored to solve a specific problem, so the
scatter search methods differ significantly of those used in this work.

In [15], the problem of assigning proctors to exams is formulated as a bi-
objective problem. However, the authors combined the objective functions to
create a single, weighted function and the problem was solved as a mono-
objective problem with the standard scatter search scheme. They did not seek
for obtaining a set of non-dominated solutions.

The problem of routing school buses in a rural area was addressed in [16].
This is a bi-objective MOP aimed at minimizing, on the one hand, the num-
ber of buses to transport students and, on the other hand, the time a given
student spends in route. Although the authors developed a solution procedure
that searches for a set of efficient solutions instead of a single optimum, the
approach used neither Pareto optimality for comparing the solution quality,
nor specialized mechanisms for dealing with the set of efficient solutions: the
reference set in scatter search is used as common repository for efficient and
non-efficient solutions.

4

Diversification
Generation Method

Reference Set
Update Method

Improvement
Method

Solution Combination
Method

Subset Generation
Method

Improvement
Method

Diversification
Generation Method

P

Reference Set

Stop if
reached

MaxIter

Improvement
Method

No more new
solutions

Initialization phase

Scatter search main loop

Diversification
Generation Method

Reference Set
Update Method

Improvement
Method

Solution Combination
Method

Subset Generation
Method

Improvement
Method

Diversification
Generation Method

P

Reference Set

Stop if
reached

MaxIter

Improvement
Method

No more new
solutions

Initialization phase

Scatter search main loop

Fig. 1. Outline of the standard scatter search algorithm.

Laminate ply sequence optimization of hybrid composite panels was attempted
for simultaneous optimization of both weight of the panel and its cost in [17].
The weighted sum approach was used for solving the multiobjective problem
where the two objectives were combined into one overall objective function.
The scatter search method used did not incorporate specialized mechanisms
for multiobjective functions. Trade-off results were provided by using different
values of the weights.

3 Description of the Proposed Algorithm

AbYSS is based on the scatter search template proposed in [6] and its applica-
tion to solve bounded continuous single objective optimization problems [8].
The template consists of the definition of five methods, as depicted in Fig. 1.
The methods are: diversification generation, improvement, reference set up-
date, subset generation, and solution combination.

At this point, we have to note that scatter search is a generic strategy, and
many decisions have to be made to design a concrete scatter search algo-
rithm. In particular, the balance between diversification and intensification
must be carefully adjusted; otherwise, the algorithm may require a high num-
ber of iterations to converge to efficient solutions. In this section, we give a
generic description of AbYSS, considering that it is possible to combine dif-
ferent methods and parameters in the algorithm. We make an study of these
issues in Section 4.

In the following sections, we first comment the scatter search method according
to the template; then we describe the five methods, mainly focusing on the

5

improvement and reference set update procedures, which constitute the basis
of our proposal. After that, we detail how the external archive is managed.
Finally, we outline the overall algorithm.

3.1 The Scatter Search Template

The scatter search method starts creating an initial set of diverse individuals
in the initialization phase. This phase consists of iteratively generating new
solutions by invoking the diversification generation method; each solution is
passed to the improvement method, which usually applies a local search, and
the resulting individual is added to the initial set. After the initial phase, the
scatter search main loop starts.

The main loop begins by building the reference set from the initial set by
invoking the reference set update method. Then, solutions in the reference set
are systematically grouped in subsets of two or more individuals by means of
the subset generation method. In the next step, solutions in each subset are
combined to produce a new individual, according to the solution combination
method. The improvement method is applied to each new individual, and the
final step consists of deciding whether the resulting solution is or not inserted
into the reference set. This loop is executed until a stopping condition is
fulfilled (for example, a given number of iterations has been performed, or the
subset generation method does not produce new subsets).

Optionally, there is a re-start process. The idea is to obtain a new initial set,
which includes the individuals in the reference set. The rest of individuals is
generated using the diversification generation and improvement methods, as
in the initial phase.

3.2 Scatter Search Methods

In order to describe the algorithm, in the following the initial set is named P ,
and the reference set is known as RefSet.

3.2.1 Diversification Generation Method

This method is basically the same one proposed in [8]. The goal is to generate
an initial set P of diverse solutions. The method is based on dividing the range
of each variable in a number of subranges of equal size; then, each solution is
created in two steps. First, a subrange is randomly chosen, with the probability
of selecting a subrange being inversely proportional to its frequency count (the

6

number of times the subrange has been selected); second, a value is randomly
generated within the selected range.

3.2.2 Improvement Method

The idea behind this method is to use a local search algorithm to improve
the new solutions obtained from the diversification generation and solution
combination methods (see Fig. 1). Contrary to [8], where the simplex method is
used, we have to deal with MOPs which may have constraints, so simplex does
not seem adequate. Instead, we propose an improvement method consisting
of a simple (1 + 1) Evolution Strategy (ES), which is based on a mutation
operator and a Pareto dominance test. This way, we do not follow the strict
guidelines of scatter search about avoiding the use of stochastic operators.
The justification of this decission has to do with the simplicity of the resulting
improvement method and the benefits of using operators that have proven to
perform well in evolutionary algorithms. An outline of the method is shown
in Fig. 2.

The improvement method is simple. Taking an individual as parameter, it is
repeatedly mutated with the aim of obtaining a better individual. The term
“better” is defined here in a similar way as the constrained-dominance ap-
proach used in NSGA-II [1]. A constraint violation test checks whether two
individuals are feasible or not. If one of them is feasible and the other one is
not, or both are infeasible but one of them has a smaller overall constraint
violation, the test returns the winner. Otherwise, a dominance test is used to
decide whether one of the individuals dominates the other one. If the original
individual wins, the mutated one is discarded; if the mutated individual wins,
it replaces the original one; finally, if they are both non-dominated, the origi-
nal individual is moved into the external archive and the mutated individual
becomes the new original one.

We can point out several features of the proposed improvement method. First,
mutated individuals are only evaluated if they are going to replace the original
individual. Second, in the case of finding several nondominated solutions in the
procedure, they are inserted into the external archive. Finally, we can easily
adjust the improvement effort by tuning the parameter iter.

3.2.3 Reference Set Update Method

The reference set is a collection of both high quality solutions and diverse
solutions that are used to generate new individuals by applying the solution
combination method. The set itself is composed of two subsets, RefSet1 and
RefSet2, of size p and q, respectively. The first subset contains the best quality
solutions in P , while the second subset should be filled with solutions pro-

7

Individual improvement(Individual originalIndividual, int iter) {
Individual mutatedIndividual
repeat iter times {

mutatedIndividual = mutation(originalIndividual)
if (the problem has constraints) {

evaluateConstraints(mutatedIndividual)
best = constraintTest(mutatedIndividual, originalIndividual)
if (none of them is better than the other one) {

evaluate(mutatedIndividual)
best = dominanceTest(mutatedIndividual, originalIndividual)

} // if
else if (mutatedIndividual is best)

evaluate (mutatedIndividual)
} // if
else { // the problem has no constraints

evaluate(mutatedIndividual)
best = dominanceTest(mutatedIndividual, originalIndividual)

} // else
if (mutatedIndividual is the best)

originalIndividual = mutatedIndividual
else if (originalIndividual is best)

delete(mutatedIndividual)
else { // both individuals are non-dominated

add originalIndividual to external archive
originalIndividual = mutatedIndividual

} // else
} // repeat

return originalIndividual
} // improvement

Fig. 2. Pseudocode describing the improvement method.

moting diversity. In [10] the set RefSet2 is constructed by selecting from P
those individuals whose minimum Euclidean distance to RefSet1 is the high-
est. We keep the same strategy for building RefSet2, but, as it is usual in the
multiobjective optimization domain, we have to define the concept of “best
individual” to build RefSet1. Additionally, the reference set update method is
also used to update the reference set with the new solutions obtained in the
scatter search main loop (see Fig. 1). A scheme of this method is included in
Fig. 3.

To select the best p individuals of P we use the approach used in SPEA2,
i.e., the individuals in P are assigned a fitness value which is the sum of their
strength raw fitness and a density estimation [2]. The strength of an individual
is the number of solutions it dominates in a population, and its strength raw

8

referenceSetUpdate(bool build) {
if (build) { // build a new reference set

select the p best individuals of P
build the RefSet1 with these p individuals
compute Euclidean distances in P to obtain q individuals
build the RefSet2 with these q individuals

} // if
else { // update the reference set

for (each new solution s) {
test to insert s in RefSet1
if (test fails)

test to insert s en RefSet2
if (test fails)

delete s
} // for

} // else
} // referenceSetUpdate

Fig. 3. Pseudocode describing the reference set update method.

fitness is the sum of the strengths of its dominator individuals. The density
estimation is based on calculating the distance to the k-th nearest neighbor
(see [2] for further details).

Once the reference set is filled, its solutions are combined to obtain new so-
lutions which, after applying the improvement method to them, are checked
against those belonging to the reference set. According to the scatter search
template, a new solution can become a member of the reference set if either
one of the following conditions is satisfied:

• The new individual has better objective function value than the individual
with the worst objective value in RefSet1.

• The new individual has a better distance value to the reference set than the
individual with the worst distance value in RefSet2.

While the second condition holds in the case of multiobjective optimization,
we have again to decide about the concept of best individual concerning the
first condition. To determine whether a new solution is better than another
one in RefSet1 (i.e., the test to insert a new individual s in RefSet1, as it
appears in Fig. 3) we cannot use a ranking procedure because the size of this
population usually is small (typically the size of the whole reference set is 20
or less). Our approach is to compare each new solution i to the individuals in
RefSet1 using a dominance test. This test is included in Fig. 4. (For the sake
of simplicity, we do not consider here constraints in the MOP. The procedure
to deal with constraints is as explained in the improvement method in Fig. 2

9

// Test to update the RefSet1 with individual s
bool dominated = false
for (each solution r in RefSet1)

if (s dominates r)
remove r from RefSet1

else if (r dominates s)
dominated = true

if (not dominated)
if (RefSet1 not full)

add s to RefSet1
else

add s to the external archive
else // the individual s is dominated

// test to update the RefSet2 with individual s
...

Fig. 4. Pseudocode describing the test to add new individuals to RefSet1.

above.)

Let us note that when a new individual is not dominated by the RefSet1, it is
inserted into this set only if it is not full. This means that the new individual
has to dominate at least one individual in RefSet1. If this condition does not
hold, the individual is inserted into the external archive.

3.2.4 Subset Generation Method

According to the scatter search template, this method generates subsets of
individuals, which will be used for creating new solutions with the solution
combination method. Several kinds of subsets are possible [8]. Usually, this
method is used to generate all pairwise combinations of solutions in the refer-
ence set. Furthermore, this method should avoid producing repeated subsets
of individuals, i.e. subsets previously generated.

In AbYSS this method generates, on one hand, pairwise combinations of indi-
viduals in RefSet1 and, on the other hand, pairwise combinations of individuals
in RefSet2. Our preliminary experiments (see Section 4) revealed that gener-
ating combinations of individuals from the two subsets makes the algorithm
to converge poorly. The reason is related to the fact that the combination
of individuals from the two RefSets increases the exploration capabilities of
the search, thus producing an unbalance between intensification and diver-
sification. As as result, the algorithm requires to perform a large number of
iterations to converge to an accurate Pareto front.

10

3.2.5 Solution Combination Method

The idea of this method in the scatter search strategy is to find linear com-
binations of reference solutions. After studying this issue in our preliminary
tests, we observed that the results were very competitive for many problems,
but the algorithm failed when trying to solve some difficult problems. In Sec-
tion 4 we analyze the use of a simulated binary crossover operator (SBX) [13]
instead, concluding that the use of SBX makes AbYSS more robust.

3.3 Managing the External Archive

The main objective of the external archive (or repository) is to store a histor-
ical record of the nondominated individuals found along the search process,
trying to keep those individuals producing a well-distributed Pareto front.
The key issue in the archive management is to decide whether a new solution
should be added to it or not.

When a new solution is found in the improvement or the solution combina-
tion methods, it is compared with the content of the archive, on a one-per-one
basis. If this new solution is dominated by an individual in the archive (i.e.,
the solution is dominated by the archive), then such solution is discarded;
otherwise, the solution is stored in the archive. If there are solutions in the
archive that are dominated by the new element, then such solutions are re-
moved. If the archive reaches its maximum allowable capacity after adding
the new solution, a decision has to be made for deciding to remove one of its
individuals.

The strategy used in other archive-based evolutionary algorithms to decide
the individual to be deleted when the archive is full, such as PAES [3] and
MOPSO [18], is to divide up the objective function space using an adaptive
grid, which is a space formed by hypercubes. Our approach is to use instead the
crowding distance used in NSGA-II [1]. The crowding distance is an estimation
of the density of solutions surrounding a particular solution in a population (in
our case, this population is the external archive), and it is based on calculating
the average distance of two points on either side of this point along each of
the objectives.

It is worth mentioning here that we could have used the density estimation
of SPEA2, as we did in the reference set update method. We decided to use
two different density estimations with the aim of hopefully profiting from the
combination of them in different parts of our algorithm in the direction of
getting a better distributed Pareto front. The rationale of this decision is
that the solutions in the archive have passed two filters: first, they are not
in the most dense region, according to the crowding distance, and second,

11

construct the initial set P
// outer loop
until (stop condition) {

referenceSetUpdate(build=true)
subsetGeneration()
// scatter search main loop
while (new subsets are generated) {

combination()
for (each combinated individual) {

improvement()
referenceSetUpdate(build=false)

} // for
subsetGeneration()

} // while
// Re-start
add RefSet1 to P
move the best n individuals from the archive to P
fill P with new solutions

} // until

Fig. 5. Outline of the AbYSS algorithm.

they are obtained from the best individuals of the initial set according to the
density estimation. We have made some experiments comparing the use of
only one density estimator in AbYSS, and the combination of both yielded
better results.

3.4 Outline of AbYSS

Once the five methods of the scatter search have been proposed and a proce-
dure to manage the external repository has been defined, we are now ready
to give an overall view of the technique. The outline of AbYSS is depicted in
Fig. 5.

Initially, the diversification generation method is invoked to generate s initial
solutions, and each of them is passed to the improvement method. The result
is the initial set P . Then, a number of iterations are performed (the outer loop
in Fig. 5). At each iteration, the reference set is built, the subset generation
method is invoked, and the main loop of the scatter search algorithm is ex-
ecuted until the subset generation method does not produce new subsets of
solutions. Then, there is a re-start phase, which consists of three steps. First,
the individuals in RefSet1 are inserted into P ; second, the best n individuals

12

in the external archive, according to the crowding distance, are also moved
to P ; and, third, the diversification generation and improvement methods are
used to produce new solutions to filling up the set P .

The idea of moving n individuals from the archive to the initial set is to pro-
mote the intensification capabilities of the search. The intensification degree
can vary depending on the number of chosen individuals. We use a value of n
that is the minimum between the size of the archive and half of the size of P .

The stopping condition of the algorithm can be fixed, or it can depend on
other conditions; here, we have used the computation of a predefined number
of fitness evaluations (see Section 5).

4 Study of Different Parameter Configurations

As commented before, several issues should be studied to make decisions in
order to set a number of parameters defining the behavior of AbYSS. Although
an extensive analysis of the parameters of AbYSS is out the scope of this paper,
we include here a study of a number of them. In particular, we focus on the use
of the SBX crossover operator in the solution combination method, the size
of the set P , the generation of all pairwise combinations of individuals in the
reference set in the subset generation method, and the number of iterations
in the improvement method.

We describe next the metrics we consider in this paper to evaluate the perfor-
mance of the algorithms. These metrics will be also used in Section 5.

4.1 Performance Metrics

For assessing the performance of algorithms on the tests problems, two differ-
ent issues are normally taken into account: minimize the distance of the Pareto
front generated by the proposed algorithm to the exact Pareto front, and to
maximize the spread of solutions found, so that we can have a distribution of
vectors as smooth and uniform as possible. To determine the first issue it is
usually necessary to know the exact location of the true Pareto front; in this
work we have obtained these fronts using an enumerative search strategy (an
exception are the ZDTx problem family, whose fronts can be easily obtained
because their solutions are known).

The performance metrics can be classified into three categories depending on
whether they evaluate the closeness to the Pareto front, the diversity in the
obtained solutions, or both [5]. We have adopted one metric of each type.

13

• Generational Distance This metric was introduced by Van Veldhuizen
and Lamont [19] for measuring how far the elements are in the set of non-
dominated vectors found so far from those in the Pareto optimal set and is
defined as:

GD =

√

∑n
i=1 d2

i

n
, (1)

where n is is the number of vectors in the set of non-dominated solutions
found so far and di is the Euclidean distance (measured in objective space)
between each of these solutions and the nearest member of the Pareto opti-
mal set. It is clear that a value of GD = 0 indicates that all the generated
elements are in the Pareto optimal set. In order to get reliable results, non-
dominated sets are normalized before calculating this distance measure.

• Spread The Spread metric [1] is a diversity metric that measures the extent
of spread achieved among the obtained solutions. This metric is defined as:

∆ =
df + dl +

∑N−1
i=1

∣

∣

∣di − d̄
∣

∣

∣

df + dl + (N − 1)d̄
, (2)

where di is the Euclidean distance between consecutive solutions, d̄ is the
mean of these distances, and df and dl are the Euclidean distances to the
extreme (bounding) solutions of the exact Pareto front in the objective
space (see [1] for the details). This metric takes a value zero for an ideal
distribution, pointing out a perfect spread out of the solutions in the Pareto
front. We apply this metric after a normalization of the objective function
values (see Appendix A for a further analysis of this issue).

• Hypervolume This metric calculates the volume (in the objective space)
covered by members of a non-dominated set of solutions Q (the region en-
closed into the discontinuous line in Fig. 6, Q = {A,B,C}) for problems
where all objectives are to be minimized [20]. Mathematically, for each so-
lution i ∈ Q, a hypercube vi is constructed with a reference point W and
the solution i as the diagonal corners of the hypercube. The reference point
can simply be found by constructing a vector of worst objective function
values. Thereafter, a union of all hypercubes is found and its hypervolume
(HV) is calculated:

HV = volume

|Q|
⋃

i=1

vi

 . (3)

Algorithms with larger values of HV are desirable. Since this metric is
not free from arbitrary scaling of objectives, we have evaluated the metric
by using normalized objective function values.

14

f1

f2

Pareto-optimal front

W

A

B

C

Fig. 6. The hypervolume enclosed by the non-dominated solutions.

4.2 Analysis of the Proposed Configurations

We have performed five experiments, which have been applied to solve five
representative problems usually included in similar studies. The problems are:
ZDT1 (convex), ZDT2 (nonconvex), ZDT3 (disconnected), ZDT4 (nonconvex,
multimodal), and ZDT6 (nonconvex, nonuniformly spaced) [21]. They are fully
described in Section 5.1.

The following set of parameters are used by default: we use a polynomial mu-
tation operator with a distribution index equal to 20, the number of iterations
in the improvement method is 5, and the sizes of both RefSet1 and RefSet2 is
10.

(1) Experiment 1: We configure AbYSS with what can be considered as a
typical set of values: we use linear combinations to create new individuals
in the solution combination method, the size of P is 100, and the sub-
set generation method generates all pairwise combinations of individuals
belonging to both RefSet1 and RefSet2.

(2) Experiment 2: We repeat the experiment 1, but using the SBX oper-
ator in the solution combination method. The distribution index of this
operator has a value of 20.

(3) Experiment 3: In this experiment, we keep the same parameter settings
as in the previous experiment, but the size of P is reduced down to 20
individuals.

(4) Experiment 4: AbYSS is configured as in the third experiment, but the
subset generation method produces pairs of individuals belonging only to
RefSet1 or RefSet2.

(5) Experiment 5: In the last experiment, we repeat the experiment 4, but
we turn again to use linear combinations instead of the SBX crossover.

The algorithm stops when 25,000 function evaluations have been computed.

15

We have made 30 independent runs of each experiment, and the obtained
results are shown in Table 1, which includes the mean, x̄, and standard devia-
tion, σn. The best result is marked in boldface (in the case of comparing values
with the same mean, we choose the one with lowest standard deviation).

Table 1
Results of executing different configurations of AbYSS.

GENERATIONAL DISTANCE

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Problem x̄σn
x̄σn

x̄σn
x̄σn

x̄σn

ZDT1 0.0001±1.8e−05 0.00011±2.4e−05 0.00011±2.4e−05 0.00012±3.1e−05 0.0001±3.4e−05

ZDT2 4.6e-05±1.8e−06 4.7e-05±1.7e−06 4.6e-05±2.4e−06 4.7e-05±1.9e−06 4.6e-05±2.1e−06

ZDT3 0.00019±1e−05 0.0002±1.5e−05 0.00019±1.5e−05 0.00019±8.8e−06 0.00019±1.1e−05

ZDT4 13±6 5.9±7.4 3.9±3.4 0.011±0.039 0.9±0.48

ZDT6 0.56±0.36 0.087±0.057 0.086±0.05 0.00079±0.00049 0.1±0.11

SPREAD

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Problem x̄σn
x̄σn

x̄σn
x̄σn

x̄σn

ZDT1 0.09231±0.0096 0.1025±0.012 0.1089±0.012 0.1145±0.012 0.1192±0.019

ZDT2 0.08995±0.012 0.1015±0.012 0.1089±0.011 0.1121±0.011 0.1059±0.014

ZDT3 0.7128±0.019 0.7077±0.021 0.7149±0.015 0.6978±0.028 0.7043±0.0037

ZDT4 0.6226±0.12 0.4418±0.23 0.4704±0.2 0.2785±0.16 0.3953±0.16

ZDT6 0.5131±0.22 0.4009±0.11 0.4554±0.11 0.1546±0.033 0.1546±0.2

HYPERVOLUME

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Problem x̄σn
x̄σn

x̄σn
x̄σn

x̄σn

ZDT1 0.662±1.5e−05 0.662±2.3e−05 0.662±2.1e−05 0.662±2.1e−05 0.662±3.3e−05

ZDT2 0.3287±2.1e−05 0.3287±2.1e−05 0.3287±2.6e−05 0.3287±2.6e−05 0.3287±3e−05

ZDT3 0.516±6e−05 0.5159±7.7e−05 0.516±3.5e−05 0.5158±0.00065 0.516±1.3e−05

ZDT4 0±0 0±0 0±0 0.5796±0.17 0.0007±0.004

ZDT6 0.1544±0.17 0.09795±0.058 0.1066±0.082 0.3958±0.0011 0.3651±0.1

We can observe that there are not important differences when solving the
problems ZDT1, ZDT2, and ZDT3 according to the three metrics. The main
differences among the experiments arise in the problems ZDT4 and ZDT6. We
now analyze each experiment in detail.

Experiment 1 The results show that the configuration used in this experi-
ment produces the best results in the problems ZDT1 and ZDT2. Considering
the problem ZDT3, the values of the generational distance and hypervolume
metrics are similar to the other experiments, although the spread value is the
higuest. With this configuration, AbYSS fails to solve the problem ZDT4,
which is indicated by the high Generational Distance value and the fact of
obtaining a value of 0 in the hypervolume metric. This indicates that all the

16

points are out of the limits of the true Pareto front. This experiment produces
also the worst results in the problem ZDT6.

Experiment 2 The results of this experiment (see Table 1, third column)
show that using the SBX operator in the solution combination method the
values of the three metrics are very close to the ones produced by the first
experiment considering the problems ZDT1, ZDT2, and ZDT3. Regarding the
problems ZDT4 and ZDT6, the convergency and diversity metrics produce
better values, although there are not improvements in the hypervolume metric.

Experiment 3 As indicated before, in this experiment we reduce the size of
the initial set P from 100 to 20 individuals. We consider this reduction because
preliminary experiments seemed to indicate that using large sizes for P had
a negative influence in the convergence of the algorithm when solving some
problems. The results of this experiment does not allow us to confirm this
claim; we observe that although the values of the generational distance in the
problems ZDT4 and ZDT6 are slightly better than the previous experiments,
the diversity gets worse compared to Experiment 2.

Experiment 4 With the idea in mind of investigating whether the diversi-
fication/intensification balance of AbYSS is penalized if the the subset gener-
ation method produces pairs of individuals belonging to RefSet1 and RefSet2,
in this experiment we allow only combinations of individuals belonging to the
same set. The results (see Table 1, fifth column) show that this configura-
tion substantially enhances the solutions of the problems ZDT4 and ZDT6,
while keeping practically the same values in the other problems compared to
Experiment 3.

Experiment 5 In Experiment 4 we achieved a configuration that success-
fully solved the considered problems. To analyze the influence of the crossover
operator in the solution combination method we use again linear combina-
tions instead of the SBX operator. The results of this last experiment do not
improve those obtained in Experiment 4.

A conclusion of these experiments is that the SBX crossover is clearly superior
than the linear combinations operator suggested by the orthodox scatter search
strategy. A similar result was obtained in [22] in the context of single-objective
continuous optimization, where the BLX-α operator also improved the efficacy
of stater search with respect to the classical linear combinations method.

17

To conclude this section, we can state that the parameter settings of the ex-
periment 4 are the most promising of the tested ones for AbYSS. Nevertheless,
the configurations used in the rest of experiments are worth of being taken
into account to face some problems given the excellent results obtained in the
instances ZDT1, ZDT2, and ZDT3. Now that we have decided the set of pa-
rameters charaterizing AbYSS, we are ready to make a deeper evaluation of
our proposal, including a comparison against two state-of-the-art evolutionary
algorithms for solving MOPs.

5 Evaluation

Several test functions have been taken from the specialized literature to com-
pare our approach. In order to know how competitive AbYSS is, we decided
to compare it against two algorithms that are representative of the state-of-
the-art. These algorithms are NSGA-II and SPEA2. Next, we briefly describe
these algorithms, including the parameter settings used in the subsequent ex-
periments.

• Nondominated Sorting Genetic Algorithm II: The NSGA-II algo-
rithm was proposed by Deb et al. [1]. It is based on obtaining a new popu-
lation from the original one applying the typical genetic operators (selection,
crossover, and mutation); then, the individuals in the two populations are
sorted according to their rank, and the best solutions are chosen to create
a new population. In the case of having to select some individuals with the
same rank, a density estimation based on measuring the crowding distance
to the surrounding individuals belonging to the same rank is used to get
the most promising solutions.

We have used Deb’s NSGA-II implementation 2 . We have used the real-
coded version and the parameter settings used in [1]. A crossover probability
of pc = 0.9 and a mutation probability pm = 1/n (where n is the number of
decision variables) are used. The operators for crossover and mutation are
SBX and polynomial mutation, with distribution indexes of ηc = 20 and
ηm = 20, respectively. The population size is 100 individuals.

• Strength Pareto Evolutionary Algorithm: SPEA2 was proposed by
Zitler et al. in [2]. In this algorithm, each individual has assigned a fitness
value that is the sum of its strength raw fitness and a density estimation
(see Section 3.2.3). The algorithm applies the selection, crossover, and mu-
tation operators to fill an archive of individuals; then, the nondominated
individuals of both the original population and the archive are copied into a
new population. If the number of nondominated individuals is greater than

2 The implementation of NSGA-II is available for downloading at:
http://www.iitk.ac.in/kangal/soft.htm

18

the population size, a truncator operator based on calculating the distances
to the k-th nearest neighbor is used. This way, the individuals having the
minimum distance to any other individual are chosen.

We have used the authors’ implementation of SPEA2 3 . The algorithm
is implemented within the framework PISA [23]. However, the implementa-
tion of SPEA2 does not contain a constraint-handling management, so we
forced to modify the original implementation to include the same constraint
mechanism used in NSGA-II and AbYSS. We have used the following val-
ues for the parameters. The population and the archive have a size of 100
individuals, and the crossover and mutation operators are the same used in
NSGA-II, using the same values concerning their application probabilities
and distribution indexes.

The parameters characterizing AbYSS were discussed in the previous section.
AbYSS is written in C++, and its source code is available at the following
Web address: http://neo.lcc.uma.es/Software/deme/html/index.html.

5.1 Test Problems

In this section we describe first the three different sets of both constrained and
unconstrained problems, which have been used in past studies in this area.
From them, we have selected first the following bi-objective unconstrained
problems: Schaffer [24], Fonseca [25], and Kursawe [26], as well as the prob-
lems ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6, which are defined in [21]. The
formulation of these problems is provided in Table 8 (see Appendix B for the
tables describing the problems), which also shows the number of variables,
their bounds, and the nature of the Pareto-optimal front for each problem.

The second set is composed of the following constrained bi-objective problems:
Osyczka2 [27], Tanaka [28], Srinivas [13], Constr Ex [1], and Golinski [29].
Their formulation is presented in Table 9, which includes also the constraints,
the number of variables, and the variable bounds.

Finally, we have included four problems of more than two objectives. The
problems are Viennet2, Viennet3, and Viennet4 [30], and Water [31]. The two
first problems have three objectives and zero contraints, the third one has
three objectives and three constrains, and the last one has five objectives and
seven constraints. Their formulation is included in Table 10.

3 The implementation of SPEA2 is available at:
http://www.tik.ee.ethz.ch/pisa/selectors/spea2/spea2.html

19

5.2 Discussion of the Results

To evaluate each algorithm, we have made two series of experiments. We have
run first all the approaches for a number of 25,000 function evaluations, and
we have repeated them again using as stopping condition to carry out 50,000
function evaluations. For each problem, we have executed 100 independent
runs. The spread metric is not applicable to problems with more than two
objectives; for this reason, the problems Viennet2, Viennet3, Viennet4, and
Water do not appear in the tables contaning the results of this metric.

In all the tables we include in the results the mean, x̄, and standard deviation,
σn; the best results are marked in boldface. Furthermore, we have applied an
Anova test with a 5% of significance level (marked as “+” in tables). This
way, a “+” at the end of a row indicates that the values have a statistical
confidence in the sense that the differences are unlikely to have occurred by
chance with a probability of 95%.

Tables 2, 3, and 4 show the results of the previously described metrics using the
algorithms AbYSS, NSGA-II, and SPEA2 when performing 25,000 function
evaluations.

Table 2
Mean and standard deviation of the generational distance metric (25,000 function
evaluations).

AbYSS NSGA-II SPEA2

Problem x̄σn
x̄σn

x̄σn
A

Schaffer 0.00023±1.3e−05 0.00023±1.2e−05 0.00024±1.1e−05 +

Fonseca 0.00021±2.2e−05 0.00047±3.9e−05 0.00023±2.4e−05 +

Kursawe 0.00015±1.5e−05 0.00021±2.2e−05 0.00016±1.5e−05 +

Zdt1 0.00012±2.5e−05 0.00022±3.6e−05 0.0002±1.3e−05 +

Zdt2 4.7e-05±2.4e−06 0.00017±3.8e−05 0.00011±5.4e−05 +

Zdt3 0.00019±1.1e−05 0.00022±3.7e−05 0.00023±1.3e−05 +

Zdt4 0.021±0.089 0.00049±0.00026 0.062±0.039 +

Zdt6 0.00072±0.00012 0.001±8.7e−05 0.00083±5.1e−05 +

ConstrEx 0.00022±2.5e−05 0.00029±3.2e−05 0.00021±1.8e−05 +

Srinivas 7.6e-05±4.1e−05 0.00019±3e−05 0.00011±2e−05 +

Osyczka2 0.0063±0.011 0.0011±0.00013 0.0061±0.011 +

Golinski 0.0017±0.0067 0.00032±2.2e−05 0.00028±8.6e−05 +

Tanaka 0.00075±7.4e−05 0.0012±8e−05 0.00072±7.1e−05 +

Viennet2 0.00077±0.00029 0.00085±0.00037 0.00087±0.00018 +

Viennet3 0.00011±4.2e−05 0.00023±6e−05 0.00032±0.00014 +

Viennet4 0.00027±6.8e−05 0.00046±0.00013 0.00058±0.00016 +

Water 0.0065±0.0044 0.0064±0.0011 0.017±0.0016 +

The generational metric indicates that AbYSS obtains the best results in ten
out of the seventeen test problems. It is interesting to note that on the second

20

Table 3
Mean and standard deviation of the Spread metric (25,000 function evaluations).

AbYSS NSGA-II SPEA2

Problem x̄σn
x̄σn

x̄σn
A

Schaffer 0.1545±0.014 0.4448±0.036 0.1469±0.011 +

Fonseca 0.1174±0.012 0.3596±0.028 0.1445±0.013 +

Kursawe 0.4137±0.0059 0.546±0.024 0.439±0.0089 +

Zdt1 0.1107±0.01 0.3645±0.029 0.1684±0.013 +

Zdt2 0.1125±0.012 0.3644±0.03 0.1403±0.067 +

Zdt3 0.7007±0.037 0.7416±0.023 0.704±0.018 +

Zdt4 0.3143±0.18 0.3651±0.033 0.1049±0.17 +

Zdt6 0.1466±0.017 0.2988±0.025 0.1728±0.012 +

ConstrEx 0.1728±0.014 0.4212±0.035 0.5204±0.016 +

Srinivas 0.08339±0.01 0.368±0.03 0.1628±0.013 +

Osyczka2 0.3269±0.15 0.4603±0.056 0.3145±0.14 +

Golinski 0.213±0.12 0.414±0.035 0.4871±0.26 +

Tanaka 0.7313±0.033 0.7154±0.024 0.6655±0.027 +

Table 4
Mean and standard deviation of the hypervolume metric (25,000 function evalua-
tions).

AbYSS NSGA-II SPEA2

Problem x̄σn
x̄σn

x̄σn
A

Schaffer 0.8298±4.2e−05 0.8287±0.00024 0.8296±6e−05 +

Fonseca 0.3106±0.00026 0.3064±0.00047 0.3105±0.00024 +

Kursawe 0.4009±0.00021 0.3997±0.00023 0.4009±0.00014 +

Zdt1 0.6619±2.1e−05 0.6594±0.00028 0.66±0.00025 +

Zdt2 0.3287±2.6e−05 0.3262±0.00032 0.268±0.13 +

Zdt3 0.5154±0.0052 0.5148±0.00037 0.5139±0.00041 +

Zdt4 0.5934±0.15 0.6546±0.004 0.1483±0.15 +

Zdt6 0.3957±0.0017 0.386±0.0013 0.3925±0.00088 +

ConstrEx 0.776±0.0002 0.7745±0.00032 0.7751±0.00033 +

Srinivas 0.5406±9.5e−05 0.5382±0.00037 0.54±0.00015 +

Osyczka2 0.694±0.12 0.7464±0.0083 0.6775±0.12 +

Golinski 0.9702±0.043 0.969±0.00017 0.9659±0.0057 -

Tanaka 0.3071±0.00036 0.3075±0.00037 0.3088±0.00026 +

Viennet2 0.9221±0.00095 0.9204±0.0014 0.9252±0.00038 +

Viennet3 0.836±0.00035 0.8337±0.00054 0.8266±0.0013 +

Viennet4 0.8595±0.0015 0.8571±0.002 0.8637±0.00078 +

Water 0.4235±0.0044 0.4087±0.0057 0.4029±0.0056 +

group of problems (biobjective and constrained) our extended implementation
of SPEA2 achieves the best results in three out of the five problems in that
group, what points out the accurate implementation we developed.

The results obtained from the Spread metric (see Table 3) indicates that
AbYSS also outperforms the other two algorithms concerning the diversity

21

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

f_
2

f_1

ABYSS
Enumerative

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

f_
2

f_1

NSGA-II
Enumerative

-12

-10

-8

-6

-4

-2

 0

 2

-20 -19 -18 -17 -16 -15 -14

f_
2

f_1

SPEA2
Enumerative

Fig. 7. AbYSS and SPEA2 find better spread of solutions than NSGA-II on problem
Kursawe

of the obtained Pareto fronts. It yields the best values in nine out of the thir-
teen problems. To illustrate this fact, we show typical simulation results of the
three algorithms when solving the problems Kursawe and ConstrEx. In Fig. 7
we include one of the 100 fronts produced by each technique when solving the
first problem. We can observe that the nondominated set of solutions gener-
ated by AbYSS achieves an almost perfect spread out; only SPEA2 is able to
produce a similar Pareto front. Fig. 8 shows the fronts obtained by the three
algorithms when solving the second problem; again AbYSS produces the best
quality front.

The hypervolume metric confirms the results of the two other metrics; thus,
we observe that AbYSS obtains the best values in eleven problems. NSGA-II
obtains the best results in the problems ZDT4 and Osyczka2, with significant
differences when compared to AbYSS and SPEA2.

We now turn to analyze the results obtained when running 50,000 function
evaluations, which are included in Tables 5, 6, and 7. The ranking of the
algorithms yielding better generational distance is maintained compared with
the previous experiment. It is interesting to note that AbYSS significatively
enhances the generational distance values when solving the problems ZDT4,
Golinski, and Viennet3. This indicates that our algorithm encounters some
difficulties to converge to the true Pareto front when trying to solve some

22

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f_
2

f_1

ABYSS
Enumerative

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f_
2

f_1

NSGA-II
Enumerative

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f_
2

f_1

SPEA2
Enumerative

Fig. 8. AbYSS obtains a better spread of solutions than SPEA2 and NSGA-II on
problem ConstrEx

kind of problems, and a larger number of steps are required to achieve better
results in these situations. The spread (Table 6) and hypervolume (Table 7)
confirm this claim, and AbYSS gets the best values in eleven out of the thirteen
problems and eleven out of the seventeen problems, respectively. Finally, it is
worth mentioning that some algorithms produce worse results when computing
more function evaluations (e.g., AbYSS on Srinivas, Osyczka2, and Tanaka;
SPEA2 on ZDT4 and Tanaka).

We also want to remark that, concerning diversity, AbYSS is not only the best
of the three analyzed algorithms, but the differences in the spread values are
in general noticeable compared to the rest of algorithms.

In order to demonstrate the working principles of AbYSS, we include simula-
tion results of AbYSS on the test problems ZDT1, ZDT2, ZDT4, and ZDT6
(computing 50000 function evaluations). The fronts are included in Fig. 9.
The performance of AbYSS on these problems confirms the excellent values
of the spread metric, while achieving also a noticeable convergence to the true
Pareto front.

23

Table 5
Mean and standard deviation of the generational distance metric (50,000 function
evaluations).

AbYSS NSGA-II SPEA2

Problem x̄σn
x̄σn

x̄σn
A

Schaffer 0.00023±1.4e−05 0.00023±1.2e−05 0.00024±1.1e−05 +

Fonseca 0.00018±2.1e−05 0.00046±3.9e−05 0.00022±2.2e−05 +

Kursawe 0.00014±9.8e−06 0.00021±2.4e−05 0.00016±1.5e−05 +

Zdt1 0.00012±2.5e−05 0.00019±3.8e−05 0.00016±1.9e−05 +

Zdt2 4.6e-05±2.4e−06 0.00013±4.3e−05 4e-05±2e−05 +

Zdt3 0.00019±8.2e−06 0.00021±1.3e−05 0.00021±1.3e−05 +

Zdt4 0.00049±0.00023 0.00019±7.2e−05 0.065±0.037 +

Zdt6 0.00054±1.4e−05 0.00056±3.4e−05 0.00055±1.7e−05 +

ConstrEx 0.00017±1.9e−05 0.00029±3.4e−05 0.0002±2.3e−05 +

Srinivas 5.8e-05±2.6e−05 0.00019±3.5e−05 0.00012±2.2e−05 +

Osyczka2 0.0019±0.004 0.0016±0.0033 0.0067±0.012 +

Golinski 0.00085±0.00083 0.00033±2.2e−05 0.00027±8.6e−05 +

Tanaka 0.0012±0.0039 0.0012±6.9e−05 0.00078±5.2e−05 -

Viennet2 0.00083±0.00027 0.00084±0.00035 0.00087±0.00014 -

Viennet3 8.6e-05±2.8e−05 0.00022±6.3e−05 0.0028±0.022 -

Viennet4 0.00026±7.3e−05 0.00049±0.00017 0.00051±0.00014 +

Water 0.006±0.0023 0.0062±0.00088 0.017±0.0019 +

Table 6
Mean and standard deviation of the Spread metric (50,000 function evaluations).

AbYSS NSGA-II SPEA2

Problem x̄σn
x̄σn

x̄σn
A

Schaffer 0.1328±0.017 0.4466±0.037 0.1472±0.012 +

Fonseca 0.105±0.011 0.3631±0.029 0.1467±0.016 +

Kursawe 0.4109±0.0035 0.5499±0.022 0.4368±0.0091 +

Zdt1 0.1028±0.013 0.3612±0.033 0.1676±0.012 +

Zdt2 0.1005±0.011 0.3758±0.032 0.1378±0.068 +

Zdt3 0.6975±0.03 0.743±0.014 0.706±0.0043 +

Zdt4 0.1296±0.019 0.3885±0.033 0.1186±0.22 +

Zdt6 0.09334±0.0096 0.4324±0.033 0.1714±0.012 +

ConstrEx 0.1516±0.01 0.4274±0.029 0.5187±0.016 +

Srinivas 0.07583±0.0094 0.3615±0.035 0.1628±0.012 +

Osyczka2 0.2402±0.065 0.4501±0.054 0.3098±0.13 +

Golinski 0.1515±0.069 0.4216±0.036 0.5231±0.25 +

Tanaka 0.6474±0.029 0.6998±0.023 0.6225±0.02 +

6 Conclusions and Future Work

We have presented a proposal to adapt the scatter search method to handle
multiobjective optimization problems. The proposed algorithm, AbYSS, is an
hybridized scatter search to the multiobjective field, and it uses an external

24

Table 7
Mean and standard deviation of the hypervolume metric (50,000 function evalua-
tions).

AbYSS NSGA-II SPEA2

Problem x̄σn
x̄σn

x̄σn
A

Schaffer 0.8298±4e−05 0.8287±0.00027 0.8296±6.3e−05 +

Fonseca 0.311±0.00023 0.3064±0.0005 0.3106±0.00024 +

Kursawe 0.4013±0.00013 0.3998±0.00023 0.4009±0.00016 +

Zdt1 0.662±2.2e−05 0.6604±0.00025 0.6615±5.5e−05 +

Zdt2 0.3287±2.1e−05 0.3273±0.00023 0.2659±0.13 +

Zdt3 0.5159±0.0006 0.5154±9.8e−05 0.5156±7.2e−05 +

Zdt4 0.6561±0.0032 0.6592±0.0013 0.1366±0.15 +

Zdt6 0.4003±0.00012 0.3943±0.00025 0.3994±0.0002 +

ConstrEx 0.7764±0.00017 0.7745±0.00029 0.7752±0.00034 +

Srinivas 0.5407±7.2e−05 0.5383±0.00032 0.54±0.00015 +

Osyczka2 0.7452±0.039 0.7387±0.06 0.6774±0.13 +

Golinski 0.9687±0.088 0.9691±0.00018 0.9671±0.00045 -

Tanaka 0.3061±0.02 0.3078±0.00024 0.3092±0.00015 -

Viennet2 0.922±0.0008 0.9203±0.0015 0.9252±0.00046 +

Viennet3 0.8361±0.00028 0.8336±0.00061 0.8121±0.1 +

Viennet4 0.8595±0.0016 0.8575±0.0021 0.8638±0.00094 +

Water 0.4251±0.0029 0.4103±0.0057 0.4033±0.0055 +

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f_
2

f_1

ABYSS
Enumerative

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f_
2

f_1

ABYSS
Enumerative

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1

f_
2

f_1

ABYSS
Enumerative

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f_
2

f_1

ABYSS
Enumerative

Fig. 9. Nondominated solutions with AbYSS on problems ZDT1 (top left), ZDT2
(top right), ZDT4 (bottom left), and ZDT6 (bottom right)

25

archive to store the nondominated individuals found during the search. Salient
features of AbYSS are the feedback of individuals from the archive to the initial
set in the re-start phase of the scatter search, as well as the combination of two
different density estimators in different parts of the search. On the one hand,
the crowding distance, taken from NSGA-II, is applied to remove individuals
from the archive when it becomes full and to choose the best individuals which
are removed from the archive to feed the initial set in the re-start; on the other
hand, the density estimator used in SPEA2 is considered to obtain the best
individuals from the initial set to create the reference set.

AbYSS was validated using a standard methodology which is currently used
in the evolutionary multiobjective optimization community. The algorithm
was compared against two state-of-the-art multiobjective optimization algo-
rithms; for that purpose, seventeen test problems, including unconstrained
and constrained ones, were chosen and three metrics were used to assess the
performance of the algorithms. The results of the three metrics reveal that
AbYSS outperforms all the proposals on the considered test problems: run-
ning the algorithms for 50000 function evaluations, AbYSS achieves the best
results in eleven and twelve out of the seventeen test problems according to
the generational and hypervolume metrics, respectively, and in eleven out of
the thirteen problems considered according to the spread metric.

The evaluation of AbYSS with other benchmarks and its application to solve
real-world problems are matter of future work. It is also desirable to make a
deep study of the parameters defining the behavior of the algorithm.

References

[1] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation
6 (2) (2002) 182–197.

[2] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength pareto
evolutionary algorithm, Tech. Rep. 103, Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland (2001).

[3] J. Knowles, D. Corne, The pareto archived evolution strategy: A new baseline
algorithm for multiobjective optimization, in: Proceedings of the 1999 Congress
on Evolutionary Computation, IEEE Press, Piscataway, NJ, 1999, pp. 9–105.

[4] C. Coello, D. Van Veldhuizen, G. Lamont, Evolutionary Algorithms for Solving
Multi-Objective Problems, Genetic Algorithms and Evolutionary Computation,
Kluwer Academic Publishers, 2002.

26

[5] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John
Wiley & Sons, 2001.

[6] F. Glover, A template for scatter search and path relinking, Lecture Notes in
Computer Science, Springer Verlag, 1997.

[7] F. Glover, M. Laguna, R. Mart́ı, Fundamentals of scatter search and path
relinking, Control and Cybernetics 29 (3) (2000) 653–684.

[8] F. Glover, M. Laguna, R. Mart́ı, Scatter search, in: A. Ghosh, S. Tsutsui (Eds.),
Advances in Evolutionary Computing: Theory and Applications, Springer, 2003.

[9] R. P. Beausoleil, MOSS: Multiobjective scatter search applied to nonlinear
multiple criteria optimization, to appear in the European Journal of Operational
Research (2005).

[10] J. Molina, M. Laguna, R. Mart́ı, R. Caballero, SSPMO: A scatter tabu
search procedure for non-linear multiobjective optimization, to be published
in INFORMS Journal on Computing (2005).

[11] A. J. Nebro, F. Luna, E. Alba, New ideas in applying scatter search to
multiobjective optimization, in: C. Coello, A. Hernández, E. Zitler (Eds.), Third
International Conference on Evolutionary MultiCriterion Optimization, EMO
2005, Vol. 3410 of Lecture Notes in Computer Science, Springer, 2005, pp. 443–
458.

[12] J. A. Vasconcelos, J. H. R. D. Maciel, R. O. Parreiras, Scatter Search Techniques
Applied to Electromagnetic Problems, IEEE Transactions on Magnetics 4 (5)
(2005) 1804–1807.

[13] N. Srinivas, K. Deb, Multiobjective function optimization using nondominated
sorting genetic algorithms, Evolutionary Computation 2 (3) (1995) 221–248.

[14] C. G. da Silva, J. Cĺımaco, J. Figueira, A scatter search method for the bi-
criteria multi-dimensional {0,1}-knapsack problem using surrogate relaxation,
Journal of Mathematical Modelling and Algorithms 3 (3) (2004) 183–208.

[15] R. Mart́ı, H. Loureno, M. Laguna, Computing tools for modeling, optimization
and simulation: Interfaces in computer science and operations research, Kluwer
Academic Publishers, 2000, Ch. Assigning Proctors to Exams with Scatter
Search, pp. 215–227.

[16] A. Corberán, E. Fernández, M. Laguna, R. Mart́ı, Heuristic Solutions to the
Problem of Routing School Buses with Multiple Objectives, Journal of the
Operational Research Society 53 (4) (2002) 427–435.

[17] A. Rama Mohan Rao, N. Arvind, A Scatter Search Algorithm for Stacking
Sequence Optimisation of Laminate Composites, Composite Structures (2005)
To appear.

[18] C. Coello, G. Toscano, M. Salazar, Handling multiple objectives with particle
swarm optimization, IEEE Transactions on Evolutionary Computation 8 (3)
(2004) 256–278.

27

[19] D. A. Van Veldhuizen, G. B. Lamont, Multiobjective Evolutionary Algorithm
Research: A History and Analysis, Tech. Rep. TR-98-03, Dept. Elec. Comput.
Eng., Graduate School of Eng., Air Force Inst. Technol., Wright-Patterson,
AFB, OH (1998).

[20] E. Zitzler, L. Thiele, Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach, IEEE Transactions on
Evolutionary Computation 3 (4) (1999) 257–271.

[21] E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary
algorithms: Empirical results, Evolutionary Computation 8 (2) (2000) 173–195.

[22] F. Herrera, M. Lozano, D. Molina, Continuous scatter search: An analysis
of the integration of some combination methods and improvement strategies,
European Journal of Operational Research 169 (2006) 450–476.

[23] S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler, PISA - A Platform and
Programming Language Independent Interface for Search Algorithms, in:
Conference on Evolutionary Multi-Criterion Optimization (EMO 2003), 2003,
pp. 494–508.

[24] J. Schaffer, Multiple objective optimization with vector evaluated genetic
algorithms, in: J. Grefensttete (Ed.), First International Conference on Genetic
Algorithms, Hillsdale, NJ, 1987, pp. 93–100.

[25] C. Fonseca, P. Flemming, Multiobjective optimization and multiple constraint
handling with evolutionary algorithms - part II: Application example, IEEE
Transactions on System, Man, and Cybernetics 28 (1998) 38–47.

[26] F. Kursawe, A variant of evolution strategies for vector optimization, in:
H. Schwefel, R. Männer (Eds.), Parallel Problem Solving for Nature, Springer-
Verlag, Berlin, Germany, 1990, pp. 193–197.

[27] A. Osyczka, S. Kundo, A new method to solve generalized multicriteria
optimization problems using a simple genetic algorithm, Structural
Optimization 10 (1995) 94–99.

[28] M. Tanaka, H. Watanabe, Y. Furukawa, T. Tanino, Ga-based decision support
system for multicriteria optimization, in: Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, Vol. 2, 1995, pp. 1556–1561.

[29] A. Kurpati, S. Azarm, J. Wu, Constraint handling improvements for multi-
objective genetic algorithms, Structural and Multidisciplinary Optimization
23 (3) (2002) 204–213.

[30] R. Viennet, C. Fontiex, I. Marc, Multicriteria Optimization Using a Genetic
Algorithm for Determining a Pareto Set, Journal of Systems Science 27 (2)
(1996) 255–260.

[31] T. Ray, K. Tai, K. Seow, An Evolutionary Algorithm for Multiobjective
Optimization, Engineering Optimization 33 (3) (2001) 399–424.

28

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f_
2

f_1

ABYSS
Enumerative

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f_
2

f_1

SPEA2
Enumerative

Fig. 10. Pareto fronts of the problem ConstrEx with AbYSS (left) and SPEA2
(right)

Appendix A: About the Spread Metric

The Spread metric measures the extent of spread achieved among the solu-
tions obtained by a multiobjective optimization algorithm. However, as defined
in [1], the metric can give confusing results if we compare two fronts and the
two objective functions range between values of different order of magnitude.
We observe this behaviour when comparing the fronts of problem ConstrEx
produced by the algorithms AbYSS and SPEA2.

As can be seen in Fig 10, the Pareto front produced by AbYSS achieves a better
spread that the one obtained by SPEA2; after applying the Spread metric, the
values reported are 0.5085 and 0.2024, respectively. Thus, according to the
metric, SPEA2 is more than twice times better than AbYSS on this problem.

If we observe the Pareto front of problem ConstrEx, we can see that it is com-
posed of two parts. The left part ranges roughly between 0.4 and 0.65 in the
x-axis and 1.5 and 9 in the y-axis, while the right part ranges between 0.65
and 1 (x-axis) and 1 and 1.5 (y-axis). A closer look to the Pareto fronts re-
veals that SPEA2 produces more solutions in the left part, while the solutions
obtained by AbYSS are uniformly spreaded among the two parts. As both
set of solutions are composed of the same number of points (100 solutions),
the Spread metric favours SPEA2 because the distances measured in the right
front are neglibible compared to those of the left front.

To solve this issue, we take the approach of normalizing the values of the two
objective functions between 0 and 1. This way, the shape of the Pareto fronts
are kept identical, and the results of applying the Spread metric yield 0.15 to
AbYSS and 0.51 to SPEA2.

29

Appendix B: Formulation of the Benchmark Problems

Table 8
Unconstrained bi-objective problems.

Problem Objective functions n Variable bounds Comments

Schaffer
f1(x) = x2

f2(x) = (x − 2)2
1 −105 ≤ x ≤ 105 convex

Fonseca
f1(~x) = 1 − e

−

∑

n

i=1
(xi−

1
√

n
)2

f2(~x) = 1 − e
−

∑

n

i=1
(xi+

1
√

n
)2

3 −4 ≤ xi ≤ 4 nonconvex

Kursawe
f1(~x) =

∑n−1

i=1

(

−10e

(

−0.2∗
√

x2
i
+x2

i+1

)
)

f2(~x) =
∑n

i=1
(|xi|a + 5 sin (xi)

b)

3 −5 ≤ xi ≤ 5 nonconvex

ZDT1

f1(~x) = x1

f2(~x) = g(~x)[1 −
√

x1/g(~x)]

g(~x) = 1 + 9
(
∑n

i=2
xi

)

/(n − 1)

30 0 ≤ xi ≤ 1 convex

ZDT2

f1(~x) = x1

f2(~x) = g(~x)
[

1 − (x1/g(~x))2
]

g(~x) = 1 + 9
(
∑n

i=2
xi

)

/(n − 1)

30 0 ≤ xi ≤ 1 nonconvex

ZDT3

f1(~x) = x1

f2(~x) = g(~x)

[

1 −
√

x1

g(~x)
− x1

g(~x)
sin (10πx1)

]

g(~x) = 1 + 9
(
∑n

i=2
xi

)

/(n − 1)

30 0 ≤ xi ≤ 1
convex

disconnected

ZDT4

f1(~x) = x1

f2(~x) = g(~x)[1 − (x1/g(~x))2]

g(~x) = 1 + 10(n − 1)+
∑n

i=2
[x2

i − 10 cos (4πxi)])

10

0 ≤ x1 ≤ 1

−5 ≤ xi ≤ 5

i = 2, ..., n

nonconvex

ZDT6

f1(~x) = 1 − e−4x1 sin6 (6πx1)

f2(~x) = g(~x)[1 − (f1(~x)/g(~x))2]

g(~x) = 1 + 9[(
∑n

i=2
xi)/(n − 1)]0.25

10 0 ≤ xi ≤ 1

nonconvex

nonunformly

spaced

30

Table 9
Constrained test bi-objective problems.

Problem Objective functions Constraints n Variable bounds

Osyczka2

f1(~x) = −(25(x1 − 2)2+

(x2 − 2)2+

(x3 − 1)2(x4 − 4)2+

(x5 − 1)2)

f2(~x) = x2
1 + x2

2+

x2
3 + x2

4 + x2
5 + x2

6

g1(~x) = 0 ≤ x1 + x2 − 2

g2(~x) = 0 ≤ 6 − x1 − x2

g3(~x) = 0 ≤ 2 − x2 + x1

g4(~x) = 0 ≤ 2 − x1 + 3x2

g5(~x) = 0 ≤ 4 − (x3 − 3)2 − x4

g6(~x) = 0 ≤ (x5 − 3)3 + x6 − 4

6

0 ≤ x1, x2 ≤ 10

1 ≤ x3, x5 ≤ 5

0 ≤ x4 ≤ 6

0 ≤ x6 ≤ 10

Tanaka
f1(~x) = x1

f2(~x) = x2

g1(~x) = −x2
1 − x2

2 + 1+

0.1 cos (16 arctan (x1/x2)) ≤ 0

g2(~x) = (x1 − 0.5)2+

(x2 − 0.5)2 ≤ 0.5

2 −π ≤ xi ≤ π

Constr Ex
f1(x) = x1

f2(x) = (1 + x2)/x1

g1(~x) = x2 + 9x1 ≥ 6

g2(~x) = −x2 + 9x1 ≥ 1
2

0.1 ≤ x1 ≤ 1.0

0 ≤ x2 ≤ 5

Srinivas

f1(~x) = (x1 − 2)2+

(x2 − 1)2 + 2

f2(~x) = 9x1 − (x2 − 1)2

g1(~x) = x2
1 + x2

2 ≤ 225

g2(~x) = x1 − 3x2 ≤ −10
2 −20 ≤ xi ≤ 20

Golinski

f1(~x) = 0.7854x1x2
2(10x2

3/3+

14.933x3 − 43.0934)

−1.508x1(x2
6 + x2

7)+

7.477(x3
6 + x3

7)

+0.7854(x4x2
6 + x5x2

7)

f2(~x) =

√

(
745.0x4

x2x3
)2+1.69∗107

0.1x3
6

g1(~x) = 1.0
x1x2

2
x3

− 1.0
27.0

≤ 0

g2(~x) = 1.0
x1x2

2
x3

− 1.0
27.0

≤ 0

g3(~x) =
x3
4

x2x2
3
x4
6

− 1.0
1.93

≤ 0

g4(~x) =
x3
5

x2x3x4
7

− 1.0
1.93

≤ 0

g5(~x) = x2x3 − 40 ≤ 0

g6(~x) = x1/x2 − 12 ≤ 0

g7(~x) = 5 − x1/x2 ≤ 0

g8(~x) = 1.9 − x4 + 1.5x6 ≤ 0

g9(~x) = 1.9 − x5 + 1.1x7 ≤ 0

g10(~x) = f2(~x) ≤ 1300

a = 745.0x5/x2x3

b = 1.575 ∗ 108

g11(~x) =

√
a2+b

0.1x3
7

≤ 1100

7

2.6 ≤ x1 ≤ 3.6

0.7 ≤ x2 ≤ 0.8

17.0 ≤ x3 ≤ 28.0

7.3 ≤ x4 ≤ 8.3

7.3 ≤ x5 ≤ 8.3

2.9 ≤ x6 ≤ 3.9

5.0 ≤ x7 ≤ 5.5

31

Table 10
Problems with more than two objectives.

Problem Objective functions Constraints n Variable bounds

Viennet2

f1(~x) =
(x1−2)2

2
+

(x1+1)2

13
+ 3.0

f2(~x) =
(x1+x2−3)2

36
+

(−x1+x2+2)2

8
− 17

f3(~x) =
(x1+2x2−1)2

175
+

(2x2+x1)2

17
− 13

2 −4.0 ≤ xi ≤ 4.0

Viennet3

f1(~x) = 0.5x2
1 + x2

2+

sin(x2
1 + x2

2)

f2(~x) =
(3x1−2x2+4)2

8
+

(x1−x2+1)2

27
+ 15

f3(~x) = 1
x2
1
+x2

2
+1

−

1.1exp(−x2
1 − x2

2)

2 −3.0 ≤ xi ≤ 3.0

Viennet4

f1(~x) =
(x1−2)2

2
+

(x2+1)2

13
+ 3

f2(~x) =
(x1+x2−3)2

175
+

(2x2−x1)2

17
− 13

f3(~x) =
(3x1−2x2+4)2

8
+

(x1−x2+1)2

27
+ 15

g1(~x) = −x2 − 4x1 + 4 ≥ 0

g2(~x) = x1 + 1 ≥ 0

g3(~x) = x2 − x1 + 2 ≥ 0

2 −4.0 ≤ xi ≤ 4.0

Water

f1(~x) = 106780.37(x2 + x3)+

61704.67

f2(~x) = 3000x1

f3(~x) = 305700∗2289x2

(0.06∗2289)0.65

f4(~x) = 250 ∗ 2289x2

exp(−39.75x2+

9.9x3 + 2.74)

f5(~x) = 25 1.39
(x1x2)+4940∗x3−80

g1(~x) = 1 − 0.00139
(x1x2)

+

4.94x3 − 0.08 ≥ 0

g2(~x) = 1 − 0.000306
(x1x2)

+

1.082x3 − 0.0986 ≥ 0

g3(~x) = 5000 − 12.307
(x1x2)

+

4.9408x3 + 4051.02 ≥ 0

g4(~x) = 16000 − 2.09
(x1x2)

+

8046.33x3 − 696.71 ≥ 0

g5(~x) = 10000 − 2.138
(x1x2)

+

7883.39x3 − 705.04 ≥ 0

g6(~x) = 2000 − 0.417
(x1x2)

+

1721.26x3 − 136.54 ≥ 0

g7(~x) = 550 − 0.164
(x1x2)

+

631.13x3 − 54.48 ≥ 0

3

0.01 ≤ x1 ≤ 0.45

0.01 ≤ x2 ≤ 0.10

0.01 ≤ x3 ≤ 0.10

32

